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tral characterization recovers the spectral reflectance
of a color sample from its responses produced by imag-
ing devices. The spectral sensitivity (or responsivity) of
the imaging system plays as an important role in the
spectral characterization. Since it is difficult and costly
to measure the spectral responsivity of a scanner, many
researchers tried to recover it mathematically.10–14 Based
on the recovered spectral responsivity, different tech-
niques were proposed for the spectral characterization
of digital cameras and scanners.15–18 A common assump-
tion of these techniques is that the spectral sensitivi-
ties (or responsivity) of the imaging system are accurate
enough. However, for a real scanner, its spectral sensi-
tivity may considerably depart from the linear reflec-
tance model,10 and thus one cannot ensure whether those
techniques still work when the mathematically recov-
ered spectral responsivity is not accurate enough.

For both colorimetric and spectral characterization the
performance is closely related to the correlation between
the device responses and the device-independent mea-
surement data of color samples. For polynomial regres-
sion, one may find that a small number of terms is
insufficient to describe the total correlation of the col-
ors, while larger number of terms may become over-fit-
ted. This is because that the correlation cannot be
described using a single transform from device responses
to colorimetric values. For spectral characterization, the
statistical distribution of the color samples is also im-
portant to the characterization performance as the map-
ping is from low dimensional device response space to
high dimensional reflectance space.15,16

In this article, we propose a method of estimating colo-
rimetric and spectral reflectance values from device re-
sponses using the local statistics of the training samples.
As the behavior of scanners may depart from the linear
reflectance model, spectral responsivity is not explic-
itly used in the spectral characterization. Instead, we
establish the direct transform between scanner re-

Introduction
Recently, imaging devices such as digital cameras and
scanners have become widely used in a variety of appli-
cations, and, as a consequence, the faithful exchanging
of color information between different devices is becom-
ing an important issue. The characterization establishes
the relationship between the device-dependent re-
sponses and device-independent color representation,
i.e., CIE tristimulus values and spectral reflectance
values, of imaging devices. The colorimetric character-
ization has been studied extensively in the past decade,
while the spectral characterization is now starting to
attract attentions.1,2

Typical techniques used for colorimetric characteriza-
tion are least squares based polynomial regression,3,4

look-up-table with interpolation and extrapolation,5,6

and artificial neural networks.7,8 The polynomial regres-
sion is perhaps the most frequently adopted technique
in colorimetric characterization because of its simplic-
ity and good performance. The use of different high or-
der terms in polynomial regression and their influence
on the characterization performance were carefully stud-
ied.3,9 A major drawback of the colorimetric character-
ization is its constraint to specific combinations of
illuminant and observer functions. When either the
illuminant or the observer function changes, the char-
acterization process has to be performed again. The spec-
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sponses of selected training samples and their corre-
sponding CIE XYZ values (or spectral reflectance val-
ues) for colorimetric (or spectral) characterization,
respectively. The experimental results showed that, in
both colorimetric and spectral characterizations, the pro-
posed method performed significantly better than the
traditional ones using global statistics.

Colorimetric and Spectral Characterization of
Color Scanner
When a sample with spectral reflectance r(λ) is viewed
under an illumination with spectral power distribution
Le(λ), the CIE XYZ tristimulus values can be determined
according to the color matching function   x λ( ) ,   y λ( ) , and

  z λ( )  in the visible spectrum range Λ as19

    
X K L x r d h r de= ( ) ( ) ( ) = ( ) ( )∫ ∫λ λ λ λ λ λ λ

Λ Λ 1 (1)
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where
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Λ
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For mathematical simplicity, the continuous functions
in Eqs. (1) to (4) can be represented by their sampled
counterparts, and the integration can consequently be
denoted as summation. If N uniformly spaced samples
are used over the visible spectrum range Λ, Eqs. (1) to
(3) can be combined and rewritten in the matrix-vector
notation

x = hr (5)

where x = [X, Y, Z]T (T denotes transpose) is the vector
of XYZ values, h is the 3 × N matrix of hk(λ) (k = 1,2,3),
and r is the N × 1 vector of r(λ).

Theoretically, for an ideal color scanner, the response
of the kth (k = 1,2,3) sensor at a particular pixel can be
determined as20
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where fk(λ) is the spectral transmittance of the kth color
filter, d(λ) is the spectral sensitivity of the detector in
the measurement, Ls(λ) is the spectral radiance of the
scanner illuminant, bk is a constant bias response, and
nk is signal independent noise. As the filter transmit-
tance, sensor sensitivity, and illuminant radiance are
unknown, it is convenient to group them into one quan-
tity mk(λ) = fk(λ)d(λ)Ls(λ), which we refer to as scanner
spectral responsivity in this study.

Equation (6) can also be written in its matrix vector
notation as

V = Mr + b + n (7)

where V is the 3 × 1 vector of vk, M is the 3 × N matrix of
mk(λ), b is the 3 × 1 vector of bk, and n is the 3 × 1 vector
of nk. Let U = V–b, Eq. (7) becomes

U = Mr + n (8)

Practically, the actual response of a scanner ρk of the
kth sensor is subject to a nonlinear input-output func-
tion known as optoelectronic conversion function (OECF)
Fk as the following13:

ρk  =Fk (νk) (9)

The OECF is a monotonically increasing nonlinear
function that can be derived by scanning a series of gray
patches.

The colorimetric characterization is to calculate the
CIE XYZ values x from the linear scanner responses V
or U. Due to technical reasons such as signal-to-noise
ratio (SNR) and filter design, x is generally not a lin-
ear transformation of V or U.9 Hence, the adoption of
high order and cross-term in polynomial regression is
necessary. Hong et al.3 found that 11 polynomial terms
could produce satisfactory results in digital camera
characterization, while Herzog et al.9 further investi-
gated the influence of different combination of high
order polynomial terms. Considering that the charac-
terization principle of a scanner is similar to that of a
digital camera, we also use second-order polynomial
terms. Therefore, the colorimetric characterization is
to find a 3 × L (L = 10) matrix Q to map scanner re-
sponses to CIE XYZ values:

x = Qg (10)

where

      
g = [ ]ν ν ν ν ν ν ν ν ν ν ν ν1 2 3 1

2
2
2

3
2

1 2 1 3 2 3 1, , , , , , , , ,
T

(11)

is a polynomial term vector. Let xj and gj (j = 1,2,3…) be
the jth CIE XYZ value and polynomial term vector of
the jth training sample, respectively, then the transform
matrix Q can be solved using Moore–Penrose pseudo-
inverse21 as the following

Q = (XGT)(GGT)–1 (12)

where X = [x1, x2, x3,... ], and G = [g1, g2, g3,... ].

For spectral characterization, the convenient solution
is to estimate the reflectance vector     ̂r  from the linear
response vector u by an N × 3 matrix W:

    ̂r   = WU   (13)

We regard the estimation of spectral reflectance from
linear response as determining the linear transform
matrix W in Eq. (13) such that     ̂r is a close replica of r
in minimum mean square error (MMSE) sense. Thus,
with

      
J E= { }ˆ ,r - r

2 (14)

where E denotes statistical expectation operator, the
problem is to determine W that minimizes J. By differ-
entiation of J with respect to W, we get the Wiener–
Hopf equation22

W = RruRr
–1 (15)

where
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Rru = E{rUT}, (16)

Rr = E{rrT}, (17)

are the cross- and auto-correlation matrix, respectively.
Alternatively, by introducing the orthogonality principle,
the calculation of transform matrix W becomes23

W = KrMT(MKrMT + Kn)–1  (18)

where

Kr = 〈rrT〉 (19)

Kn = 〈nnT〉 (20)

with 〈〉 being the ensemble average.22 Equation (18) is
widely used in multispectral imaging and spectral char-
acterization.16,17 An implicit assumption of this equation
is that the spectral responsivity is accurate enough.
However, for a real scanner, its behavior may depart
from the linear reflectance model considerably, and thus
the transform matrix W should not be calculated accord-
ing to Eq. (18). In this case, we consider Eq. (15) is more
appropriate as it does not explicitly incorporate the spec-
tral responsivity.

Characterization Using Local Statistics
It is noticed that the calculation of matrix Q (or W) is
highly relevant to the correlation between V and x (or
r) of the training samples. In some cases, we may be
able to estimate the transform matrix Q and W using
all the available training samples in database. More
commonly, however, the statistics or correlation matrix
may be considerably different for individual samples.16

Hence, the global correlation matrix might be insuffi-
cient to describe the transform relationship. The fea-
sible alternative is to calculate the local statistics using
neighboring training samples instead of the global one.

It is important to decide how many training samples
should be involved in the colorimetric and spectral char-
acterization respectively. The estimation using too few
training samples might be heavily biased by noise, while
using too many training samples might fail to describe
the local statistics accurately. If we let Nc and Ns be the
number of training samples in the colorimetric and spec-
tral characterization respectively, the problem is to de-
cide the value of Nc and Ns so that the characterization
error is considerably small.

Let the linear response of the candidate sample and
the ith training sample in database be Vt and Vi respec-
tively. We calculate the Euclidean distance between Vt

and Vi in the linear RGB color space

    di t i= −V V (21)

Before choosing the neighboring training samples of
Vt, we rearrange the training samples in ascending or-
der according to the distance di as V1*, V2*, …, Vi*…, etc.

When the training samples are not uniformly distrib-
uted in the color space, it is possible that some candi-
date samples have many close neighboring training
samples, while some others do not. To simulate the real
characterization problem, we further exclude the can-
didate sample Vt itself in the selection of training
samples. Therefore, the training samples are selected
from V2* to V*Nc  + 1 (or V*Ns  + 1) for colorimetric (or spectral)
characterization.

Experiments and Discussion
In the experiments, a flatbed color scanner, Epson GT-
10000+, was used in characterization. Color adjustment
functions of the scanner were disabled in the scanning
process. The color targets used were GretagMacbeth
ColorChecker Chart (MCC), GretagMacbeth Color-
Checker DC (CDC), and Kodak Gray Scale Q-14 (Q14).
These three color targets were scanned in at a resolu-
tion of 72 dpi. The dark color patches (A2, A5, A8, A11,
etc.) of the CDC target were not used since they do not
reflect enough light. The glossy ones (S1-T12) of the CDC
target were also not used. For each color patch, its mean
responses were calculated in a small center area so that
the effect of stray light from neighboring patches can
be neglected. The reflectance data of the color patches
on color targets MCC, CDC, and Q14 were measured by
the GretagMacbeth spectrophotometer CE-7000A across
the visible spectrum from 400 to 700 nm with a sam-
pling interval of 10 nm. Small aperture, UV and specu-
lar included measurement conditions were used. The
CIE XYZ values of the color patches were calculated
under illuminant D65 and CIE 1931 two degree observer
function.

The inverse OECF Fk
–1 was built using the gray color

patches of Q14, and then the linear responses V of the
color patches on the MCC were obtained according to
Eq. (9) by regarding the Fk

–1 as a one-dimensional look-
up-table. Several constraints, such as smoothness, posi-
tivity, and reproduction accuracy, were introduced
according to inequalities of Eqs. (22) to (24), in recover-
ing spectral responsivity.

    2 1 1M i M i M ik k k( ) − −( ) − +( ) ≤ ε (22)

Mk  ≥ 0 (23)

    ν δk k− ≤M r (24)

where ε = 1.0 and δ = 0.01, Mk is the kth (k = 1,2,3) 1 × N
vector of matrix M, and Mk(i) is the ith element of vector
Mk. This problem can be regarded as constrained linear
least squares and can be solved using standard math-
ematical methods such as the routine lsqlin in Matlab.
The solved spectral responsivity is shown in Fig. 1 and
the calculated b = [2.03, 2.41, 1.51]T, using the 24 color
patches on MCC. As shown, the spectral responsivity at
some wavelengths is slightly below 0, which conflicts with
Eq. (23). This is due to the over stringent constraints with
the inequalities22–24 for the scanner used, and the spec-
tral responsivity shown in Fig. 1 is the optimal solution
under these constraints. Nevertheless, the shape of the
responsivity seems quite reasonable. We simulated the
linear response of MCC and CDC using the measured
reflectance data and the recovered M according to Eq.
(9) by assuming the noise vector n = [0, 0, 0]T. The errors
between actual and simulated linear responses are shown
in Table I. It can be seen that the errors of the blue chan-
nel are slightly larger than those of the red and green
channels. In addition, the mean and standard deviation
of the absolute errors of the test target CDC are approxi-
mately two times larger than those of MCC. This clearly
indicates that the recovered spectral responsivity is not
accurate enough. It is considered that the scanner de-
parts from the linear reflectance model as the errors for
some color patches are relatively high. Therefore, as ex-
pected, the recovered M should not be used in Eq. (18)
for spectral reflectance estimation.
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The colors on the target CDC were used as the train-
ing sample database. The mean CIE 1994 color differ-
ence ∆E94* under standard illuminant D65 for different
values of Nc and Ns were plotted in Fig. 2. It was found
that in both colorimetric and spectral characterization,
the mean color difference decreases first and then in-
crease steadily with the increasing of the number of
training samples. It was considered that Nc = 40 and Ns

= 20 is appropriate for the target CDC in this study.
The value of Nc and Ns may be different when different
color targets, as the selection of training samples are
related to the color distribution in color space.

The colorimetric and spectral characterization were
conducted for CDC using local statistics (Lc = 40 and Ls

= 20) and global statistics. For spectral characteriza-
tion, its accuracy can be evaluated using the spectral
root mean square (SRMS) error defined as follows:

      

SRMS error =  
r - r r - rˆ ˆ( ) ( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

T

N

1 2

. (25)

An alternative metric is to calculate the color differ-
ence ∆E94* under various illuminants such as CIE D65,
CIE A and CIE F2. The evaluation results are given in
Table II. It is found that in either color difference or
SRMS error, the local method significantly outperforms
the global one. For colorimetric characterization, since
it is constrained to a single illuminant, only the ∆E94*
of illuminant CIE D65 was calculated and illustrated
in Table III. Again, the characterization results using
local statistics are better than the ones using global sta-

tistics. From Tables II and III, the mean and standard
deviation of color difference of the colorimetric charac-
terization are lower than for the spectral one in all cases.
This is due to the reason that the former maps low di-
mensional color space to low dimensional color space,
while the latter maps low dimensional color space to
high dimensional spectral reflectance. The transform of
the latter is therefore much more likely to suffer from
the inconsistent statistics of the training samples. The
main advantage of the spectral characterization over
the colorimetric one is that it is not constrained to single
observer and illuminant.

In addition to testing the characterization perfor-
mance on CDC itself, it is also of interest to evaluate
the cross-media metamerism between different color
targets such as MCC. From Tables II and III, the color
differences of both the spectral and colorimetric char-
acterizations using different color targets are consider-
ably larger than those using the same targets. This
observation is expected in the spectral characterization,
since the transform from spectral reflectance to device
response is a many-to-one problem. That is, given a low
dimensional device response U, it is usually insufficient
to reconstruct its corresponding high dimensional spec-
tral reflectance r accurately. However, as pointed out
by Sharma and Wang,24 when the domain of the spec-
tral reflectance is restricted to the same media, the spec-
tral characterization becomes a one-to-one problem, and
the accurate reconstruction of spectral reflectance is pos-
sible. For the colorimetric characterization, as the color
matching function h of human eye and the spectral
responsibity M of scanner is always not the same, two
color patches producing the same RGB values will pro-

Figure 2. Relationship between the mean color difference ∆E94*
under D65 illuminant and the number of training samples in
colorimetric (top) and spectral characterization (bottom) for
target CDC.

Figure 1. Recovered spectral responsivity of the scanner using
color patches on MCC.

TABLE I. Comparison of the actual linear responses Vk and pre-
dicted ones     V̂k  using mathematically recovered spectral
responsivity. The error of a color is calculated us-
ing

    
V V Vk k k− ×ˆ %,max 100 , where Vk,max  is the maximum linear

response of the kth channel of the white patch of MCC.

MCC CDC
Red Green Blue Red Green Blue

Mean error (%) 0.80 0.75 1.41 1.88 1.66 2.78
Maximum error (%) 1.90 1.56 4.65 4.70 5.05 9.69
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duce different CIE XYZ tristimulus values. This obser-
vation is also noticed by Hong et al.3

Conclusions
In this article, we proposed a method of colorimetric and
spectral characterization using local statistics of train-
ing samples. The colorimetric characterization is based
on polynomial regression, while the spectral character-
ization is based on a minimum mean square error crite-
rion without the explicit use of spectral responsivity.
This method is considered to be applicable to real scan-
ners, as their behavior may depart from the linear re-
flectance model, and the statistics may be different for
individual color samples. The experimental results show
that the proposed method significantly outperforms the
traditional ones using global statistical information. In
addition, the performance of the colorimetric character-
ization is slightly better than that of spectral charac-
terization in terms of mean color difference.
Nevertheless, the mean error for both of them are bel-
low 1.7 ∆E94*, which is considered to be sufficient for
many applications. The characterization was also evalu-
ated by using training samples on CDC and testing

samples on MCC. It is noted that, due to the cross-me-
dia metamerism, the proposed characterization method
is not generic, but limited to single media.    
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TABLE III. Mean, standard deviation (Std.), and maximum (Max.)
of ∆∆∆∆∆E94* under D65 illuminant for the colorimetric characteriza-
tion when using local and global statistics. The training samples
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Same targets Different targets
Method Mean Std. Max. Mean Std. Max.

Colorimetric (Global) 2.69 2.48 10.48 4.07 3.50 13.88
Colorimetric (Local) 1.37 1.24 9.45 3.26 2.54 11.09

TABLE II. Mean, standard deviation (Std.), and maximum (Max.)
of color difference under various illuminants, and SRMS error
for the spectral characterization when using local and global
statistics. The training samples were from CDC, and the test-
ing sample were from CDC (same targets) and MCC (different
targets), respectively.

Same targets Different targets
Method Metrics Mean Std. Max. Mean Std. Max.

CIE D65 ∆E94* 3.14 2.41 14.76 4.18 3.14 14.67
Spectral CIE A ∆E94* 2.44 2.30 9.65 3.86 4.31 15.97
(Global) CIE F2 ∆E94* 3.27 2.89 14.18 4.48 3.62 15.63

SRMS error 0.027 0.022 0.149 0.041 0.021 0.099

CIE D65 ∆E94* 1.76 1.34 6.54 3.45 2.22 9.30
Spectral CIE A ∆E94* 1.19 0.96 4.78 3.17 3.03 13.81
(Local) CIE F2 ∆E94* 1.63 1.32 7.66 3.19 2.15 9.03

SRMS error 0.018 0.017 0.093 0.029 0.012 0.058


